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Abstract

The Van Hiele model of geometric reasoning establishes five levels of development,
from level 1 (visual) to level 5 (rigor). Despite the fact that this model has been
deeply studied, there are few research works concerning the fifth level. However,
there are some works that point out the interest of working with activities at this
level to promote the acquisition of previous levels. Our goal is to describe this level
through the construction and validation of a list of indicators for each of the pro-
cesses involved in geometrical reasoning (definition, proof, classification, and iden-
tification). Due to the lack of previous research, we have decided to use the Del-
phi methodology. This approach allowed us to collect information from a panel of
experts to reach a consensus through a series of phases about the indicators that
describe each of the processes. The final product of the iterative application of this
method is a list of validated indicators of the fifth Van Hiele level of reasoning. In
particular, proof and definition processes have turned out to be the most relevant
processes at this level.

Keywords Definition - Delphi methodology - Proof - Van Hiele

Introduction

In recent years, research in mathematics education at university level has received
an increasing interest shown by the work of specific groups in the most relevant
international conferences in the area such as CERME, ICME, INDRUM, or RUME.
However, the number of contributions specifically focused on geometry at university

! CERME: Congress of the European Society for Research in Mathematics Education; ICME: Interna-
tional Congress on Mathematical Education; INDRUM: International Network for Didactic Research in
University Mathematics; RUME: Research in Undergraduate Mathematics Education.
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level is really scarce, apart from those related to prospective secondary school teach-
ers. This work has made it possible to increase the knowledge of the mathematical
learning processes at tertiary level.

Among these processes, we are interested in the teaching and learning of geom-
etry. The Van Hiele model has been widely used both to study the level of geometric
thought of different groups of students or teachers (Arnal-Bailera & Manero, 2021;
Gonzalez et al., 2022; Jaime & Gutiérrez, 1994; Manero & Arnal-Bailera, 2021;
Pandiscio & Knight, 2010; Wang & Kinzel, 2014) and to design learning activities
(Abdullah & Zakaria, 2013; Corberan et al., 1994; Guillén, 2004; Howse & Howse,
2014; Wahab et al., 2017). However, there are few works concerning the fifth level
(Blair, 2004; Mayberry, 1983; Usiskin, 1982). In order to deepen the knowledge of
this level of thought, we decided to give credit to the subjective collective judgment
of experts, in this case geometry experts, via the Delphi methodology.

The aim of this study is to gain understanding on the fifth level as a base to
start a line of research on the possible effectiveness of an instructional approach to
strengthen the acquisition of the previous levels (Blair, 2004; Martin, 2008). In par-
ticular, we are thinking about ways of increasing the degree of acquisition of the
fourth level of mathematics majors and pre-service mathematics teachers (Man-
ero & Arnal-Bailera, 2021; Demiray & Isiksal, 2017; Pandiscio & Knight, 2010;
Sears, 2019). These ideas show the relevance of describing level 5 in terms of a set
of indicators (sentences expressing the different abilities of a person at this level).
These indicators could serve as a starting point to design level 5-activities that could
increase the degree of acquisition of level 4 among mathematics majors and pre-ser-
vice mathematics teachers. In terms of instructional design, these indicators could
help to design the goal of a high-level geometry course. Our research question is:
Which characteristics describe better the highest level of reasoning according to the
Van Hiele theory?

In order to answer this question, we establish the following specific objectives:

(1) Design a list of indicators for every key process present in the fifth Van Hiele
level

(2) Validate the relevance of the indicators obtained to describe the fifth Van Hiele
level

Theoretical Framework
Van Hiele Model

The Van Hiele model (Van Hiele, 1957) has been one of the most relevant theoreti-
cal frameworks concerning teaching and learning geometry at all educational lev-
els. This model states the existence of five different levels of geometric reasoning
(Burger & Shaughnessy, 1986; Hoffer, 1983; Jaime & Gutiérrez, 1990; Van Hiele,
1986) that can be summarized as follows:
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e Level I (visualization). Students at this level recognize geometric figures by their
appearance and as a whole. Also, they describe figures using their physical char-
acteristics or comparisons with everyday objects by means of a nonmathematical
language

e Level 2 (analysis). This level is characterized by the students’ ability to handle
the parts and properties of figures, which allows them to deal with mathematical
descriptions of geometric concepts

e Level 3 (informal deduction). The reasoning of this level uses logical deductions
in the first place, which enable students to interrelate properties of geometric fig-
ures. Thus, these students can understand logical classifications of families of fig-
ures, construct definitions as sets of necessary and sufficient conditions, and pro-
vide some general arguments to justify the validity of a mathematical statement

e Level 4 (formal deduction). Students at this level can produce formal proofs and
deal with equivalent definitions of a concept

e Level 5 (rigor). Students at this level can compare systems based on different axi-
oms and can study several geometries in absence of concrete models

The main characteristics of these levels consist of its sequential and hierarchical
nature, meaning that they are acquired in a specific order throughout the learning
process.

Despite the fact that the Van Hiele model contains five levels, it must be empha-
sized that almost all the related literature has been focused on the four first ones.
This lack of work on the fifth Van Hiele level can be explained by the fact that dur-
ing the scholar years very few students start the acquisition of level 4. In particular,
according to Gutiérrez and Jaime (1995), only 22.6% of the last secondary year stu-
dents show a certain degree of acquisition of level 4.

Among the very few studies in which level 5 has been considered, the works
of Usiskin (1982), Mayberry (1983), and Blair (2004) stand out. Usiskin (1982)
designed a test whose objective was to determine the Van Hiele level of the stu-
dents. That test contains 25 questions in which level 5 was also considered. Also,
Mayberry (1983) gave some ideas of the properties that questions of a Van Hiele
test must have for every level. In particular, the author pointed out that questions in
level 5 must be related with propositions considering finite geometries; notice that
this idea is coherent with the questions proposed by Usiskin. The level 5 is also con-
sidered in the work of Blair (2004). Concretely, the author describes tasks involving
classic geometry but considering non-conventional metrics (like Taxicab geometry)
as a possible way to develop level 5.

Key Processes

Some authors, such as De Villiers (1987), describe the Van Hiele levels attending
to the different processes that are involved in them. Jaime and Gutiérrez (1994) pre-
sent a description of the Van Hiele levels (from 1 to 4) that is organized in terms
of the different key processes: definition (use and formulation of definitions of geo-
metrical objects); proof (the way of convincing ourselves or someone else of the
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truth of a statement); classification (sort geometrical objects into different families
or create a new group of families to sort the objects); and identification (establish-
ing the family to which a particular geometrical object belongs to). Historically these
are the process that have been considered in order to describe the Van Hiele levels
(Burger & Shaughnessy, 1986; De Villiers, 1987; Gutierrez & Jaime, 1998). Cur-
rently, there exists a consensus among the Van Hiele research community that these
four processes are the crucial ones to consider as indicators for the Van Hiele levels;
for example, recent studies that consider the potential of the Van Hiele framework
for Graph Theory have considered these four levels (Manero & Arnal-Bailera, 2021;
Gonzalez et al., 2021).

Concerning the definition process, level 1 definitions consider only physical
global properties or consist in descriptions based on diary objects like “a rectangle is
something like a window”. Students at level 2 can state definitions in terms of a list
of mathematical properties but they do not care if the list of properties contains all
the necessary and sufficient ones. Level 3 definitions are stated as a set of necessary
and sufficient mathematical properties. Students at level 4 accept equivalent defini-
tions for the same mathematical object and are able to prove the equivalence of both
definitions by double implication. Previous research works have provided some key
ideas into high-level reasoning: Martin-Molina et al. (2018), in a study about the
way professional mathematicians define, present the definition inscribed in a more
general process of generalizing while Larsen and Zandieh (2008) point out to proof
as a motivation to define when working across different geometries.

Proofs at level 2 consist of verifying the concerning property or statement in one
or several concrete examples. Students at level 3 are able to make proofs that only
require a few logical steps. The arguments given in order to explain the truth of
a statement are based on mathematical properties but usually are informal or lack
rigor. In contrast, level 4 students understand proofs and are able to produce formal
proofs. Regarding the proof of a proposition, people on this level are conscious that
it requires a sequence of implications based on already established properties. Previ-
ous research works have provided some key ideas into high-level reasoning: Fernan-
dez-Leodn et al. (2020) state the ability of a researcher of selecting and applying
different proving methods; Weber and Mejia-Ramos (2011) showed that mathemati-
cians will eventually construct sub-proofs (e.g. lemmas) to help the understanding
of the proof; finally, Boero (1999) distinguishes between mathematical proofs as a
product, and proving as a (cyclic) process. The work across geometries is a situation
that could promote comparing several geometries. This comparison could be based
on the study of the transferability of a demonstration (Blair, 2004).

Level 1 classifications are produced attending to global physical properties. Stu-
dents at level 2 are able to classify geometrical objects into disjoint families attend-
ing to their mathematical properties. Inclusive classifications (classifications into
families with relations between them) may be done at level 3. Regarding the identifi-
cation process, it is characterized at level 1 by the recognition of geometrical objects
based on their global appearance and physical properties while at levels 2, 3, and
4, this process is based on mathematical properties. The classic descriptions of the
Van Hiele levels do not include specifications about what is or what is not classifica-
tion and recognition at level 5. Moreover, these processes are supposed to be fully
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developed at lower levels (Jaime & Gutiérrez, 1994). However, it is reasonable to
think that working in different geometries or with different metrics could develop
different skills to identify or classify objects or environments.

Delphi Method

The Delphi technique (Linstone & Turoff, 1975) consists of a methodology whose
objective is to discuss and obtain consensus about a certain question through the
iterative administration of a series of questionnaires to a panel of experts. The use of
the Delphi method for this research is justified by the facts that there is little litera-
ture concerning the related topic and there are many experts in the field of geometry
at a tertiary level. Thus, a subjective collective judgment of experts can be an appro-
priate way to obtain reliable information.

Since the Delphi method allows us to obtain a reliable consensus of opinion from
a group of experts, it has been used in many different areas of social sciences like
economy, policy making, or social services. It has also been useful in educational
settings due to the fact that it eases to form guidelines, standards, or predict trends
(Green, 2014). For example, in the last decade, it has been a usual tool in order to
develop and validate competencies that teachers should have acquired; for primary
school science teachers (Alake-Tuenter et al., 2013) and secondary school mathe-
matics teachers (Mufiz-Rodriguez et al., 2017).

This method can be described as follows: A questionnaire is designed by a small
monitor team (usually called research group) who sends it to a larger respond-
ent group (also called panel of experts). Once the completed questionnaires are
received, the research group summarizes the obtained answers and, based upon
them, develops a new questionnaire for the panel of experts who should evaluate
the ideas presented on it. In successive phases, the panel reevaluates the same or
a modified questionnaire in which is also given a controlled feedback of the group
responses to the previous assessments. This iterative process finishes when a termi-
nation criterion is achieved (Linstone & Turoff, 1975).

The implementation of this method can be summarized explaining the initial
preparation, the administration of questionnaires, and the termination criterion.

The initial preparation requires to determine the expert panel and the elaboration
of the first questionnaire. On one hand, Hsu and Sandford (2007) describe that peo-
ple with experience and related background on that issue can be considered eligible.
Also, heterogeneity on the members of the panel is desirable. On the other hand,
the number of panelists is in general lower than 50 (Witkin & Altschuld, 1995), and
most of Delphi studies contain 15-20 experts (Ludwig, 1997). The first question-
naire is traditionally formed by open-ended questions; however, structured question-
naires on the first phase can be used if they are obtained after an exhaustive review
of the related literature (Hsu & Sandford, 2007).

After the first questionnaire is fulfilled and sent back, the research group ana-
lyzes the experts’ productions. This analysis consists of a revision of their answers
in order to clarify, avoid duplications, and classify them into different categories.
With the results of the previous analysis, a structured questionnaire is designed.
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Afterwards, the expert panel is required to evaluate the relevance of the different
items presented there, generally using a Likert scale (Cox, 1996). In the following
phases, the panel of experts receive some controlled feedback possibly including
all the panelists’ answers to the previous phase (Andranovich, 1995; Scheibe et al.,
1975) or just some measures of centrality; in this latter case, the use of the median
is preferred in the literature (Eckman, 1983; Hill & Fowles, 1975; Jacobs, 1996).
Along with this feedback, the panelists are asked to reevaluate the items.

Regarding the termination criterion, Linstone and Turoff (1975) established that
three phases could be sufficient to complete the study. Another termination criterion
consists in finishing the study when consensus is achieved. Usually, consensus is said
to have been obtained when a high percentage of ratings concentrates in a concrete
range (Miller, 2006). Another finishing criterion can be validity: A certain item or idea
is considered to be validated when there exists consensus about its relevance or con-
venience. Other authors (Scheibe et al., 1975) consider stability (no significant differ-
ences in the evaluations of consecutive phases) in order to terminate the Delphi study.

Methodology
Application of the Delphi Method

The iterative administration of the questionnaires has been done via online, con-
cretely using Google questionnaires. The number of phases was previously fixed in
three as stated by Linstone and Turoff (1975).

The first questionnaire was validated by two professors of mathematics education
who are experts in the Van Hiele model, none of them being involved in this work.

In the first phase, a personalized email was sent to the participants including a
cover letter and a link to the questionnaire. In the letter, the study and their objec-
tives were presented as well as a brief description of the Delphi method and a sched-
ule of the phases.

At the beginning of the questionnaire, we included an introduction to the Van
Hiele model (see Fig. 1). The questionnaire consisted of five questions. The first four
questions were related to the four key processes (Burger & Shaughnessy, 1986) and
were introduced by a short description of the corresponding process, for each level,
according to the one given in Gutiérrez and Jaime (1995). After this introduction,
we posed the following open question: Regarding this process, what elements, capa-
bilities ... Describe someone who is at level 5 of geometric reasoning? Thus, the
panel of experts was required to elaborate comments that, in their opinion, described
the different processes in level 5. The last question was: If you consider that Van
Hiele level 5 involves processes other than those described above, you can indicate
it here. This question intended to explore possible different processes involved in the
highest Van Hiele level.

Finally, the research group analyzed all these comments following a thematic
analysis (Clarke & Braun, 2016): We clustered them into similar categories, clari-
fied ambiguous wordings, discarded some due to their inappropriateness, and
deleted duplicities. As a result, we obtained the first list of indicators.
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Van Hiele's model (Van Hiele, 1957) has been a theoretical reference in the field of teaching and
learning geometry at all educational levels. However, the more advanced levels have been very
little studied, being very few works focused on this topic.

The general purpose of our research project is to develop scientific knowledge of the characteristics
that distinguish the most advanced level of geometric reasoning (level 5 - rigor). In the fifth level,
as described by Burger and Shaughnessy (1986), a person is able to compare systems based on
different axioms and can study various geometries in the absence of concrete models. Aspects dealt
with by people at this level would be non-Euclidean geometries, non-Euclidean metrics or finite
geometries, among others.

A good way to understand Van Hiele's levels is through how the different key processes that appear
in geometry are understood in each of them: definition (use and establishment), proof,
classification and identification

Fig. 1 Introduction to the Van Hiele model presented in the questionnaire

In the second phase of the Delphi method, the experts were asked to evaluate
the relevance of the indicators obtained after phase 1 using a four-point Lik-
ert scale ((1) no relevance; (2) insignificantly relevant; (3) relevant; and (4)
highly relevant). Experts were allowed to make comments in order to justify
their ratings.

In order to validate the different indicators, we followed a similar approach to
the one described in Muiiiz-Rodriguez et al. (2017). We classified the indicators
into three different groups according to its validity, i.e. the consensus about its high
relevance:

e Validated. When at least 70% of the experts’ ratings were 4
e Reevaluate. Between 40 and 70% of the experts’ ratings were 4
e Rejected. When less than 40% of the experts’ ratings were 4

The consensus percentage has been established at 70% since according to Hsu
and Sandford (2007) and Green (2014), this is the percentage used to determine
consensus for a four-point Likert scale. Then, if there exists consensus concern-
ing the high relevance of a certain indicator, we consider it as validated by the
panel of experts.

In addition to validation, it would be interesting to follow a subsequent process
that would detect gaps or repetitions among the indicators or allow them to be writ-
ten in a more functional way for their use in teaching. We refer to a process that
would include the design of tasks for university mathematics students in which it
would be possible to detect the presence of such indicators.

The questionnaire of the third, and final, phase asked for the rating of indi-
cators that have not been validated nor rejected in the previous phase. As
Andranovich (1995) and Scheibe et al. (1975) recommend, we included all the
previous ratings of these indicators in the questionnaire. For the indicators that
have received relevant comments in the second phase, we provided an alternative
wording to be rated.
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Sample

According to Hsu and Sandford (2007), the panel of experts’ must be a heterogenic
sample of people with expertise or experience in the concerning issue. In this regard,
the sample was designed to be representative of the geometry experts’ population.
Specifically, we have considered only mathematicians with expertise in geometry
and topology. Concretely, the whole sample of our study consisted of 25 university
teachers, all of them holding a PhD in geometry and topology. A small group of the
respondents (5 out of the 25 teachers) had prior experience on mathematics educa-
tion having held positions at the mathematics education university department or in
secondary education. Thus, our sample combines the required expertise in math-
ematics and teaching experience at different educational levels.

The respondents to our questionnaires belong to different European universities,
mostly in Spain. The reasons to choose these respondents were related to the fol-
lowing: accessibility, they were easy to contact with through their university web-
sites; relevance of their research, the respondents belong to research groups with an
important presence in conferences such as ICM? and a large number of indexed pub-
lications; heterogeneity of their research, the respondents belong to research groups
focused on different sub-fields of geometry: algebraic geometry, differential geom-
etry ...; and commitment, they agreed to answer the different questionnaires and to
participate in the study until its completion; in some of the cases, this commitment
had to do with the professional relation with the authors, and note that the Delphi
literature stablishes the importance of a motivated panel in order to obtain high-
quality responses (Andranovich, 1995).

We have not found worldwide or European statistics on the number of geometry and
topology teachers at tertiary level. However, to gain some understanding of the size of
the intended population, we considered that in the last 30 years, only 453 thesis were
defended in Spain related to the area of geometry and topology.® Moreover, in this
country, there are only around 200 university teachers of geometry and topology.*

The sample is balanced in terms of gender and university position (see Table 1).
Considering the teaching area of the experts, there are 15 teachers of geometry and
topology, 7 of other areas of mathematics (mainly applied mathematics), and 3 part-
time university/secondary school teachers. Out of the 25 teachers, 19 are currently
enrolled in research projects (with research papers published in the last 5 years in
the area of geometry and topology), while the other 6 are mainly dedicated to teach-
ing or management tasks.

2 ICM: International Congress on Mathematics. Spanish participants in the last three conferences were
2.37% of participants, whereas the Spanish population is 0.61% of the world population.

3 The Spanish Department of Universities supports the Teseo database which contains the data of any
doctoral thesis read in Spain since 1977. In the last 30 years, 453 thesis were read in Spain containing the
UNESCO codes 120400 (geometry) or 121000 (topology) respectively. https://www.educacion.gob.es/
teseo/irGestionarConsulta.do

* The Spanish Department of Universities supports the University Information System (SIIU). In the
2020/2021 academic year, there were 218 teachers working in the disciplines of geometry and topology
in Spanish universities. https://n9.cl/jyz1k
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Table 1 Distribution of the

.. Men Women Total
sample by gender and position

Assistant professors or equivalent position 6 4 10
Associate professors or equivalent position 3 5
Professors or equivalent position 4 3
Total 13 12 25

The panel of experts involved two different groups, namely A and B, who were
formed by 14 and 11 experts respectively. Group A participated along the three
phases of the study while group’s B participation started at the second phase. This
incorporation of members to the panel of experts during the different phases of the
study helps to increase the validity and reliability of the results (Linstone & Turoff,
1975; Muiiiz-Rodriguez et al., 2017). Two of the participants did not answer at the
third phase of the study and thus, the number of respondents has been different at
every phase: 14, 25 and 23 respectively.

Results
First Phase

By condensing all the respondents’ answers to the first phase questionnaire, we got
to formulate a list of indicators (see Table 2). These indicators express potential
competences of a person reasoning at level 5.

After receiving the answers, the researchers performed a process of classifying
the 81 sentences according to their content on each of the four processes: 27 for defi-
nition, 25 for proof, 15 for classification, and 14 concerning identification.

In the case of the definition process, the comments were classified forming six
indicators (see Table 2). We describe how the definition indicator Def2’ was built
according to the three comments in Fig. 2. Respondent 9 (R9) explains that, in dif-
ferent environments the defined object can have different properties. Something
similar is pointed out by R4 but using the term mathematical structures-theories
instead of environments. Finally, R1 focuses on the similarities and differences of
the same definition when considered in different axiomatic systems. Thus, indicator
Def?2 tries to summarize that people at level 5 are able to understand that the proper-
ties of a defined object depend not only on its definition but also on the geometric
context® By geometric context, we mean the different fields in which we can work in geometry. For

3 Indicators are labeled as Defx, Prox, Clax, and Idex for definition, proof, classification, and identifica-
tion processes, respectively.
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example are different metrics, axiomatic systems, spaces, or geometries. We have chosen this expression
to encompass others that have appeared in the answers such as “domains,” “structures,” “categories,” or

“theories”. in which it is defined.

This indicator can be exemplified as follows: If we consider the definition of
the sphere as the set of points of R® which are at the same distance of a certain
point, indicator Def2 shows that someone at level 5 is able to understand that the
properties of such object would depend, not only on its definition, but also on the
metric (Euclidean, Taxicab ...).

Concerning the proof process, we obtained 25 comments in phase 1 that were
summarized into five indicators (see Table 2). In order to illustrate the indicator
construction process, we describe how the indicator Pro5 was built (see Fig. 3).
Respondent R6 remarked that proving at level 5 can be done even if the definitions
of new concepts are required. Another respondent, R9, described that a person at
this level is able to structure a demonstration into partial interesting results as lem-
mas. Finally, respondent R11 highlighted that a relevant characteristic of level 5
proofs was to decompose long proofs into definitions, lemmas, and other proofs.
From all these comments, we designed indicator Pro5 based on the idea that proofs
at this level can be structured introducing different lemmas or definitions.

The idea of structure a proof into different interesting results such as lemmas is
very common among professional mathematicians. There also exist many exam-
ples of mathematical objects which have been defined with the purpose to be used
or structure properly a theorem or its proof. A classic example of this idea in dif-
ferential geometry is Ado’s Theorem which states that every Lie algebra admits a
finite representation. This result can be found in classical works of geometry such
as Varadarajan (1984) or Lee (2013, p. 199). In both cases, it can be noticed that
the definition of finite representation appears only a few lines before the theorem,
showing that it has been introduced only because it is required to state and prove
the theorem.

In the case of the classification process, we obtained 15 comments that were clas-
sified forming four indicators (see Table 2). Respondent 1 highlighted the compe-
tence of comparing classifications in different geometries while respondent 13 stated
that the careful specification of the equivalence relation is a key element in this pro-
cess at fifth level. From these comments, we designed indicator Cla2 pointing to
the comprehension of the relativity of the classification process with respect to the
geometric context (see Fig. 4).

This indicator tries to underline the importance of the geometric context when
classifying objects. For example, as R13 points out, from a differential point of
view, an ellipsoid and a sphere are the same object while this is no longer true if we
consider a metric point of view since the curvature of both objects is different.

In the case of the identification process, we obtained 14 comments that were clas-
sified forming four indicators (see Table 2). As a matter of example, R3 commented
on the relevance of the Reidemeister’s movements to identify knots while R8 con-
sidered that some objects can be identified by studying the possibility of construct-
ing new objects from the given ones via, for example, fiber bundles. From these
comments, we designed indicator Idel expressing the ability of recognizing objects
through transforming processes (Fig. 5).
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Table 2 Phase 1 results. Indicator’s list

Definition

Defl. Constructs and uses definitions in different axiomatic systems

Def2. Understands that defining a given mathematical object is not absolute, but is an action relative to the geo-
metric context in which one works, implying for example that the defined object may have different properties
in each context

Def3. Defines new objects, for example, because it may be necessary to generalize existing ones or to prove a
statement

Def4. Understands that a definition arises out of the necessity to introduce a new mathematical object or to
emphasize a property

Def5. Compares equivalent definitions to choose the most interesting one,* depending on the work to be done
Def6. Constructs new definitions of known objects

Proof

Prol. Constructs proofs in different geometric contexts

Pro2. Understands that proving a given mathematical result is not absolute, but is an action relative to the geo-
metric context in which one is working, implying for example that a proof may, or may not, be transferable in
whole or in part to another geometric context

Pro3. Compares proofs on the basis of different criteria, e.g. for the possibility of using them to prove more
general results

Pro4. Performs hybrid formulation-proof processes by means of which one not only proves results, but also
shapes them®

Pro5. Structures a proof by recognizing partial results that can be of use in another proof and to which he gives
his own entity in the form of lemmas, definitions ...

Classification
Clal. Classifies mathematical theories, e.g. to see Euclidean geometry as a particular case of a family of geom-
etries

Cla2. Understands that classifying a given mathematical object is not something absolute, but an action relative
to the geometric context in which one works, implying for example that the equivalence relationship between
geometric objects varies from one context to another

Cla3. Establishes new classifications of mathematical objects, in addition to using already elaborated classifica-
tions

Cla4. Compares different classifications to choose the most interesting one, depending on the work to be done

Identification

Idel. Identifies geometric objects through processes that transform the given object into an equivalent object
that is directly recognizable

Ide2. Understands that recognizing a given mathematical object is not absolute, but is an action relative to the
geometric context in which one works, implying for example that the properties that characterize the object
vary from one context to another

Ide3. Identifies objects by analyzing invariants associated with them

Ide4. Intuits what aspects of an object will help the most in its recognition

“By interesting definition or classification, we mean, according to the panelist’s comments, the one that
best suits his/her interests, e.g. the one that allows subsequent reasoning to be simpler. For instance, in
some situations, it is more interesting to use the definition of continuity in terms of the pre-image of an
open set than use the delta-epsilon definition. Regarding classification, in some situations, it is interesting
to classify surfaces attending to geometrical criteria, like curvature, while in other situations, it can be
more useful to classify surfaces attending to topological criteria, like fundamental group, betti numbers,
etc. ...

"By shaping a result, we mean change the initial statement, for instance, to limit its validity. It is usual
to include in a theorem statement some initial conditions because of their necessity in the proof pro-
cess. For example, the Banach fixed-point theorem includes a condition on the completeness of the space
which is a technical requirement to complete the proof.
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R1. Given the same definition -which can be
applied in different axiomatical systems- is able to
understand the relationship (similarities and
differences) that it has in the different axiomatical
systems.

Def2. Understands that defining a given
mathematical object is not absolute, but is an
action relative to the geometric context in which
one works, implying for example that the
defined object may have different properties in
each context.

R4. Is able to understand the same definition
applied to different mathematical structures-
theories.

R9. Understands that in more general or different
environments like (finite geometries, non-Euclidean
geometries, Riemannian geometry, semi-
Riemannian, metric spaces, higher dimensions...)
the defined object can have different properties,
being able to analyze which properties vary.

Fig.2 Design of a definition indicator

There are several examples of these transformation processes that can be identi-
fied in advanced geometric work. For example, in the mathematical area of knot
theory, a knot can be represented in very complicated manners; however, the Rei-
demeister’s moves consist of transformations that preserve the knots, and maybe
simplify its presentation which eventually allows us to identify them more easily.
Another example, in the field of Riemannian geometry, consists on identifying a
six-dimensional manifold (M,g) as Calabi-Yau if the product manifold N=MXR
endowed with the cone metric h =g+ dr* (with 7 the coordinate in R) is a parallel G,
manifold (Boyer & Galicki, 2007, p. 544), which can be recognizable in terms, for
example, of the behavior of its fundamental 3-form.

We can see in Table 2 the initial list with the 19 indicators obtained after the first
phase: The processes of definition and proof have been described through six and
five indicators respectively while the processes of classification and identification
have been described only with four indicators each.

Notice that, from the revision of the 19 indicators, we can observe that related
competences or topics appear in different processes. There are three indicators
related to the comparison of definitions, proofs, or classifications. There are indi-
cators highlighting the relevance of different contexts in all the processes. Finally,
we have designed several indicators that point to the conceptual differences of the

R6. Performs demonstrations, even if they require
defining new concepts for it.

R9. Is able to structure the information in lemmas if
there is an idea that is repeated several times or if
it is considered that some partial aspect of the
proof is of interest itself.

Pro5. Structures a proof by recognizing partial
results that can be of use in another proof and to
which he gives his own entity in the form of

lemmas, definitions....

R11. It is able to decompose a long proof into
smaller steps that might require the establishment
of new definitions, lemmas, and proofs.

Fig.3 Design of a proof indicator
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R1. To be able to establish relationships within
families of concepts according to their
definitions in different geometries, being able
to compare these relationships.

R13. It is key to specify the category in which
we are working. For example, from the

Cla2. Understands that classifying a given
mathematical object is not something absolute,
but an action relative to the geometric context
in which one works, implying for example that

549

differentiable point of view, an ellipsoid and a the  equivalence  relationship  between
sphere are the same object, but this is not true geometric objects varies from one context to
if we adopt a metric point of view: the another.

curvature shows that both spaces are not
isometric. It is therefore essential to specify
carefully what the equivalence relation is.

Fig.4 Design of a classification indicator

processes with the previous levels. Among others, be aware of the necessity to
define in order to introduce a new mathematical object (Def4) or the ability to per-
form mixed formulation-proof processes (Pro4).

Second Phase

After designing the list of indicators, we administered another questionnaire to
assess their relevance to describe the fifth level. We present now the different indica-
tors with the percentage of persons awarding the maximum degree of relevance to
each of them (Table 3).

Some of the 13 indicators to be reevaluated received comments suggesting
changes, which led to their rewriting (see Table 4). For percentages between 40 and
70%, there were two different cases: If the commentaries of the respondents gave
enough information, we designed a new indicator that was included in the third phase
questionnaire along with the original one; otherwise, we included only the original
indicator. As a matter of example, the indicator Prol for the proof process was re-
written in a similar form but including some modifications due to the respondents’
comments: Since the comments expressed doubts about the meaning of geometric
context, we included some examples in the new indicator Prol.1 (see Table 4).

During this phase, the panelists provided information about their concerns; thus,
in order to illustrate the Delphi process, we describe some of the information of
the panel’s reasoning in this phase. About Prol and Pro2, some of the respondents
stated that, on the one hand, these items would correspond to Van Hiele level 4.
Regarding Pro4, the whole item was not clear to some respondents; in particular,
the expression “...but also shapes them” was not well understood. With respect to
the idea of the relevance of different geometric contexts, respondents agreed with
Cla2 but not with Def2: Some respondents noted that the question is not about an
object having different properties in different contexts but about how different con-
texts focus their attention in different types of properties.

For a better understanding of the modified indicators, we provide now some
examples. A way to illustrate Ide2.1. consists of thinking in the identification of a
circle using Taxicab or Euclidean metric. If we establish the definition of circle as
the set of points which are at the same distance from a given point, the shape of this
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R3. Identify the essential geometric objects
through processes as Reidemeister's
movements for the study of plane diagrams

of the same knot. Idel. Identifies geometric objects through
processes that transform the given object into
R8. Identification considering the possibility of an equivalent object that is directly recognizable.

constructing (or not) new objects from the
given ones (fiber bundles, metrics, etc.).

Fig.5 Design of an identification indicator

object will depend on the metric of the ambient space. Concretely, if we consider the
Taxicab metric, this object looks like a square while if we consider the Euclidean
metric, it looks like a “classical” circle.

For the case of Pro2.1. it can also be exemplified using the comparison between
Taxicab and Euclidean metrics. For example, the classical proof of the result that
the sum of the three angles of a triangle is 180° can also be done using Taxicab
metric due to the fact that the only requirement of that proof is that 180° spins are
isometries, which is also satisfied with the Taxicab metric despite the fact that iso-
metries in this later metric are not the same as the Euclidean ones.

Third Phase

Out of the original 19 indicators, 13 needed to be reevaluated in the third phase
(see Table 3). Apart from these, 5 indicators were re-written (see Table 4). Thus,
the third phase questionnaire consisted of 18 indicators. We present in Table 5 the
results obtained in this final phase. Note that all the percentages increased in the
third phase. However, since some of them were still lower than 70%, this was not
enough to validate all the proposed indicators.

For the definition process, there were 6 indicators at the questionnaire proposed in the
second phase. With the results of the second phase, one of them was rejected and two were
validated. The other three indicators were validated after the third phase questionnaire.

Considering the proof process, there were 5 indicators at the questionnaire pro-
posed in the second phase. With the ratings obtained in that phase, one was vali-
dated and the other four were proposed for a reevaluation. Once we analyzed the
comments, indicators Prol, Pro2, and Pro4 were proposed with an alternative writ-
ing (Prol.1, Pro2.1, and Pro4.1) along with indicator Pro3. According to the third
phase results, indicators Pro2.1, Pro3, and Pro4.1 were validated. Indicators Prol
and Prol.1 were classified as non-validated since they did not get more than 70% of
high-relevance rating. Note that indicators Pro2 and Pro2.1 had the same percentage,
so we decided to choose Pro2.1 due to the presence of comments of respondents
expressing their preference for it.

For the classification process, there were 4 indicators at the questionnaire pro-
posed in the second phase (see Table 2). With the results of the second phase, one
of them was validated and three were proposed for a reevaluation. Since there were
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Table 3 Percentage of persons
awarding the maximum degree
of relevance—phase 2

Table 4 Modified indicators
according to respondents’
comments

Indicator Percentage of high-  Decision
relevance ratings
Def1 72.0% Validated by the panel
Def2 68.0% Reevaluate
Def3 80.0% Validated by the panel
Def4 60.0% Reevaluate
Def5 64.0% Reevaluate
Def6 28.0% Reject
Prol 64.0% Reevaluate and propose Prol.1
Pro2 64.0% Reevaluate and propose Pro2.1
Pro3 68.0% Reevaluate
Pro4 56.0% Reevaluate and propose Pro4.1
Pro5 76.0% Validated by the panel
Clal 64.0% Reevaluate
Cla2 72.0% Validated by the panel
Cla3 52.0% Reevaluate
Cla4 48.0% Reevaluate
Idel 56.0% Reevaluate and propose Idel.1
Ide2 48.0% Reevaluate and propose Ide2.1
Ide3 36.0% Reject
Ide4 52.0% Reevaluate
Proof

Prol.1. Constructs proofs in different geometric contexts (projective
geometry, algebraic geometry, differential geometry ...)

Pro2.1. Is able to consider whether or not a proof can be totally or
partially transferable to another geometric context, understanding
that proving a certain mathematical result is an action linked to the
geometric context in which one works

Pro4.1. Performs mixed formulation-proof processes, eventually
being able to modify the statement according to the development
of the proof

Identification

Idel.1. Identifies geometric objects through processes that transform
the given object into an equivalent object that is recognizable

Ide2.1. Understands that the identification of a given mathematical
object is not absolute, but is an action relative to the geometrical
context, since if an object is changed in context, it will probably
become a different object

no comments on this process, we could not propose a rewriting of these three indica-
tors. According to the third phase results, indicator Clal was validated, while indica-
tors Cla3 and Cla4 were classified as non-validated.

Considering the identification process, there were 4 indicators at the question-
naire proposed in the second phase. With the results of the second phase, one was
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rejected and the other three were proposed for a reevaluation, two of them along
with an alternative rewriting. According to the third phase results, indicator Idel.1
was validated, while the rest of the indicators were classified as non-validated.

We present in Table 6 the list of validated indicators. We can observe the rel-
evance of definition and proof processes in comparison with the rest of them.

Discussion

Our results highlight the processes of definition and proof as the most relevant in
Van Hiele’s level 5. However, classification and identification processes seem to
play a certain role at this level. In quantitative terms, the processes of definition and
proof have been described through five and four indicators respectively while the
processes of classification and identification have been described by two and one
indicators respectively.

In the definition process, the use and formulation of definitions are usually stud-
ied separately. At this level, the indicators that have appeared are mainly related to
the formulation of definitions. These five indicators can be clustered into two differ-
ent groups: on one hand indicators Defl and Def2, and on the other hand indicators
Def3, Def4, and Def5.

Indicators Defl and Def2 form the first set of indicators which is related to the
influence of working in diverse geometrical contexts. Indicator Defl (constructs and
uses definitions in different axiomatic systems) is a core part of the Van Hiele level
5 (Burger & Shaughnessy, 1986) and expresses the ability of working at different
axiomatic systems, whereas indicator Def2 (understands that defining a given math-
ematical object is not something absolute, but is an action relative to the geometric
context in which one works, implying for example that the defined object may have
different properties in each context) points out the relevance of reasoning across
several geometries as opposed to within a particular geometry (Blair, 2004). In this
regard, Silfverberg (2019) states that, a person reasoning at level 5 can investigate
Euclidean-equivalent concepts in geometries such as spherical or Taxicab which
means that this person can move between different axiomatic systems.

Indicators Def3, Def4, and Def5 are related to the reasons that lead to formulating
new definitions or choosing between definitions. Concerning the formulation of new
definitions, Martin-Molina et al. (2018) point out: “a popular activity in the field of
differential geometry consists of defining new spaces by taking a well-known defi-
nition and generalizing it” (p. 1076). Several of our respondents suggested similar
ideas leading to the construction of indicator Def3 (defines new objects, for exam-
ple, because it may be necessary to generalize existing ones or to prove a statement).
In their study, Martin-Molina and colleagues identified four phases in the defining
process (finding an opportunity to generalize an existing concept, proposing a new
definition, justifying that the new definition is valid, and continuing the chain of
definitions). Notice that while Def3 can be associated with the generalization phase,
indicator Def4 (understands that a definition arises from the need to introduce a new
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Table5 Percentage of persons
awarding the maximum degree
of relevance—phase 3

Indicator Percentage of high-rele-  Decision
vance ratings

Def2 73.9% Validated by the panel
Def4 73.9% Validated by the panel
Def5 82.6% Validated by the panel
Prol 69.6% Non-validated
Prol.1 47.8% Non-validated
Pro2 73.9% Validated by the panel
Pro2.1 73.9% Validated by the panel
Pro3 82.6% Validated by the panel
Pro4 69.6% Non-validated
Pro4.1 73.9% Validated by the panel
Clal 78.3% Validated by the panel
Cla3 56.6% Non-validated
Cla4 56.6% Non-validated
Idel 65.2% Non-validated
Idel.1 78.3% Validated by the panel
Ide2 65.2% Non-validated
Ide2.1 60.9% Non-validated
Ide4 56.5% Non-validated

mathematical object or to emphasize a property) highlights the reasons that lead to
proposing a new definition.

Once the need for a definition of a concept has been established, it may be nec-
essary to choose among several definitions of the same concept depending on the
objectives; this need is reflected in the indicator Def5 (compares equivalent defi-
nitions to choose the one that interests him/her most, depending on the work to
be done). Kemp and Vidakovic (2021) report on the problems faced by students
enrolled in a college geometry course when they had to extend the concept of midset
from Euclidean to Taxicab geometry. To solve this problem, they needed to compare
and analyze the differences between two equivalent definitions of midset in order to
determine which one could be transferred to Taxicab geometry.

Regarding the proof process, we have found four different indicators (five if we
consider Prol”) which can be grouped as Prol and Pro2.1 on one hand and Pro3,
Pro4.1, and Pro5 on the other hand.

Indicators Prol and Pro2.1 form a first set of indicators which is related to the
construction of proofs in different geometric contexts. Indicator Prol (performs
proofs in different geometric contexts) is a fundamental part of Van Hiele’s level
5 (Burger & Shaughnessy, 1986) and expresses the ability of working at different
axiomatic systems. Indicator Pro2.1 (is able to consider whether or not a proof can
be totally or partially transferable to another geometric context, understanding that

7 Prol has a percentage slightly lower than 70% (69.6%) but we considered it interesting to mention it in
this section due to its presence in the description of the level in classical works.
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Table 6 Indicators validated by the panel describing the fifth Van Hiele level

Definition

Def1. Constructs and uses definitions in different axiomatic systems

Def2. Understands that defining a given mathematical object is not absolute, but is an action relative to
the geometric context in which one works, implying for example that the defined object may have dif-
ferent properties in each context

Def3. Defines new objects, for example, because it may be necessary to generalize existing ones or to
prove a statement

Def4. Understands that a definition arises out of the necessity to introduce a new mathematical object or
to emphasize a property

Def5. Compares equivalent definitions to choose the most interesting one, depending on the work to be
done

Proof

Pro2.1. Is able to consider whether or not a proof can be totally or partially transferable to another
geometric context, understanding that proving a certain mathematical result is an action linked to the
geometric context in which one works

Pro3. Compares proofs on the basis of different criteria, e.g. for the possibility of using them to prove
more general results

Pro4.1. Performs mixed formulation-proof processes, eventually being able to modify the statement
according to the development of the proof

Pro5. Structures a proof by recognizing partial results that can be of use in another proof and to which he
gives his own entity in the form of lemmas, definitions ...

Classification

Clal. Classifies mathematical theories, e.g. to see Euclidean geometry as a particular case of a family of
geometries

Cla2. Understands that classifying a given mathematical object is not something absolute, but an action
relative to the geometric context in which one works, implying for example that the equivalence rela-
tionship between geometric objects varies from one context to another

Identification

Idel.1. Identifies geometric objects through processes that transform the given object into an equivalent
object that is recognizable

proving a given mathematical result is an action linked to the geometric context in
which one works) is related to the importance of reasoning across several geometries
as opposed to within a particular geometry. In relation to this indicator, Blair (2004)
documented instances when mathematics students compared geometries by attend-
ing to whether the proof of a theorem in Euclidean geometry could be transferred or
adapted to Taxicab or spherical geometry.

Indicators Pro3, Pro4.1, and Pro5 form a second set of indicators related to the
knowledge of the internal structure of the proof: indicator Pro3 (compares proofs
on the basis of criteria that are of interest to them, e.g. the possibility of using
them to prove more general results). In this regard, Fernandez-Ledn et al. (2020),
in a study with professional mathematicians, identified the ability of selecting
between different proving methods to prove the same result. This idea can be con-
nected with Pro3 since this selection requires comparison according to a criterion.
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During the proof process, the hypotheses or the conclusions of a proposi-
tion can be found not adequate and it can be decided to generalize or to limit its
validity; this has been expressed by our respondents leading to the construction
of indicator Pro4.1 (performs mixed formulation-proof processes being able to
eventually modify the statement he/she is trying to prove depending on the devel-
opment of the proof). This fact has been expressed by Boero (1999) by distin-
guishing between mathematical proofs as a product, and proving as a process. He
stated that the proving process consists of six phases which are usually intercon-
nected in non-linear ways in mathematicians’ normal work. Based on these ideas,
Fernandez-Le6n et al. (2020) found two activities that connect to Boero’s ideas:
(1) modifying statements and (ii) formalizing modifications of statements related
to modifying the hypotheses or conclusions of a theorem.

Indicator Pro5 (structures the proof recognizing partial results that can be use-
ful in another and to which it gives its own entity in the form of lemmas, defi-
nitions) is of great interest at this level and some of the ideas described on it
have already been pointed out by several authors. Concerning the identification of
partial results, Weber and Mejia-Ramos (2011) showed that mathematicians will
eventually construct sub-proofs to verify that each line in a proof follows from
previous assertions. Also, Fernandez-Leon et al. (2020) stated that it is common
to search for proof techniques or tools used in other proofs that may fit in well
with a new proof. Attending the construction of definitions during the proving
process, Larsen and Zandieh (2005) showed an example of a proof analysis that
supported the development of a new concept: the idea of a small triangle.

The classification process has only two validated indicators: Clal (classifies
mathematical theories, for example, to see Euclidean geometry as a particular
case of a family of geometries) and Cla2 (understands that classifying a given
mathematical object is not something absolute, but an action relative to the geo-
metric context in which one works, implying for example that the equivalence
relation between geometric objects varies from one context to another). The for-
mer indicator is related to the faculty of comparing axiomatic systems; in this
sense, Silfverberg (2019) states that, at the highest Van Hiele level, different
geometries can be compared by observing their differences and similarities as
axiomatic systems.

The identification process has only one validated indicator: Idel.1 (identifies geo-
metric objects through processes that transform the given object into an equivalent
one that is directly recognizable). For instance, in differential geometry, it is com-
mon to identify manifolds via processes like warped products (different metrics) of
the original manifold (Boyer & Galicki, 2007) or considering the latter as the fiber
of a certain fiber bundle like for example in the mapping torus constructions.

Based in our results, we consider that the Van Hiele level 5 indicators are con-
sistent with the previous descriptions found in classical works such as Jaime and
Gutiérrez (1994) where they give the greatest relevance to the proof and definition
processes at the highest levels. Moreover, we have stated in our discussion the close
relation between both processes at this level. This relationship can be seen in indica-
tors Pro5 and Def3 which explain how a proving process can lead to a definition of a
new object while a definition can help to prove a result.

@ Springer



556 A. Arnal-Bailera, V. Manero

On the other hand, working with a combination of different geometries has
resulted in the re-appearance of indicators related to the processes of identification
and classification; note that level 4 is presented only in terms of definition and proof
processes (Gutiérrez & Jaime, 1995). The Van Hiele model proposes that mathe-
matical objects become explicit (Van Hiele, 1986) as higher levels are reached (e.
g., when a person achieves level 2, the elements of a geometrical object become
explicit in contrast with the global appreciation of these objects at level 1). In the
fifth level, the possibility of working across geometries becomes explicit (in contrast
with a somehow internal work in previous levels) giving a new meaning to the clas-
sification process. This meaning includes two different aspects: On the one hand, we
can classify different geometric contexts (e.g. Euclidean, hyperbolic, and spherical
geometries), and on the other hand, we can understand that different classifications
of geometric objects are provoked by different equivalence relationships (the clas-
sification of surfaces in geometry depends on the diffeomorphism equivalence while
in topology the equivalence relation is given by the homeomorphism).

Concerning the identification process, the mastery of the relationships between dif-
ferent geometries, metrics ... may allow that, in certain cases, the identification at this
level is carried out by working with a different metric from that of the initial problem
and then somehow transferring the results to the original metric. In both processes, it
is fundamental to work between geometries, which is a distinctive feature of level 5.

Another classical work (Burger & Shaugnessy, 1986) established that, at level
5, systems based on different axioms can be studied and compared. The obtained
results in this study agree with this idea; in particular, indicators Def1, Def2, Prol,
Pro2.1, Clal, and Cla2 focus on the relationship between geometric contexts more
than on the geometric contexts considered individually. This idea is related with
Blair’s (2004) considerations: “...reasoning within Taxicab or spherical (or any
other geometry for that matter) characterized according to the complexity of the
students’ object of thought is not inherently more or less ‘advanced’ as that within
Euclidean geometry” (p. 337). In this regard, Guven and Baki (2010) highlighted
that working with spherical geometry has similar difficulties to working with Euclid-
ean geometry. In particular, they were able to show a certain parallelism between
Van Hiele’s levels of reasoning with spherical geometry and Euclidean geometry.

Some limitations have to be discussed. Firstly, the answers of the respondents
could depend on their particular field of expertise. It seems reasonable that experts
in differential geometry and algebraic topology would give different ratings to the
same indicator. Moreover, if the panelists in future studies were researchers in differ-
ent areas of geometry, the examples they would propose would be more varied. Sec-
ondly, in order to obtain more information and to go deeper into the particular rea-
sons that lead to value each indicator in one way or another, it could be of interest to
include interviews with the panel members in such studies. A third limitation can be
found in the application of the Delphi method. Instead of using the number of phases
as a termination criterion, we could have decided to study the stability of the ratings.
Probably, this would have produced more reliable results about the validity of indica-
tors such as Prol with percentages really close to 70%. However, this could have led
to a higher number of phases with the risk of losing respondents in the final phases.
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Our future research interests include the design of a questionnaire including math-
ematical tasks in which the obtained descriptors of the fifth level could be identified
among the responses. The implementation of such a questionnaire with college/uni-
versity mathematics majors and the subsequent analysis of their productions could
give empirical support to the indicators obtained in this study. This future work could
provoke a refinement of the indicators as well as a deeper validation of them.

On the other hand, our future research also includes the study of how level 5 is
related to previous levels and how including activities at that level can improve the
teaching of geometry. In particular, Pirie and Kieren (1991) established that a person
can recur to inner (lower) level of understanding when challenged by outer (higher)
level activities. This process, called folding back, “allows for the reconstruction and
elaboration of inner level understanding to support and lead to new outer level under-
standing” (p. 172). This leads to the interest in determining the characteristics of fifth
level reasoning which would allow to create activities adapted to such level that can
promote the fully acquisition of the fourth level. This research interest is related to
previous works of the authors (Arnal-Bailera & Manero, 2021; Manero & Arnal-
Bailera, 2021) where we found that graduated students enrolled in teacher training
programs had not completely acquired the fourth level. Our work can also facilitate
different current research lines as comparative studies between different groups (in-
service teachers at different levels, mathematics majors ...) with respect to aspects
such as demonstration following those initiated by Buchbinder et al. (2022) or univer-
sity student’s interactions when working with non-Euclidean geometries (Kaisari &
Patronis, 2010).
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